Animal plasma membrane energization by chemiosmotic H+ V-ATPases.

نویسندگان

  • W R Harvey
  • H Wieczorek
چکیده

Proton-motive forces are thought to be less important than sodium-motive forces in energizing animal membranes. On the supply side, proton-motive forces across mitochondrial inner membranes are well-known energizers of ATP synthesis, catalyzed by F-type ATP synthases. However, on the demand side, proton-motive forces, generated from ATP by V-ATPases, are not widely accepted as energizers of animal membranes; instead, sodium-motive forces, generated by P-ATPases, are thought to predominate. During the 1980s, Anraku, Nelson, Forgac and others showed that proton-motive forces from H+ V-ATPases energize endomembranes of all eukaryotic cells; in most cases, chloride ions accompany the protons and the output compartment is acidified. Unexpectedly, numerous examples of animal plasma membrane energization by proton-motive forces are now appearing. In many insect epithelia, H+ V-ATPases generate transmembrane voltages which secondarily drive sensory signalling, fluid secretion and even alkalization, rather than acidification. Plasma membranes of phagocytes and osteoclasts as well as polarized membranes of epithelia in vertebrate kidney, bladder and epididymis, even apical membranes of frog skin epithelial cells, are now known to be energized by proton-motive forces. The list of proton-energized animal plasma membranes grows daily and includes cancer cells. The localization of H+ V-ATPases either on endomembranes or on plasma membranes may reflect a key event in their evolution. Proton-motive ATPases, like the H+ A-ATPases in present-day archaebacteria, appear to be ancestors of both H+ F-ATP synthases and H+ V-ATPases. On the basis of a greater than 25% overall sequence identity and much higher identity in the nucleotide-binding and regulatory sites, Nelson and others have argued that the A and B subunits of V-ATPases, like the corresponding beta and alpha subunits of F-ATP synthases, derive from common 'A-ATPase-like' ancestral subunits. They postulate that oxygen, introduced into the earth's atmosphere by cyanobacteria, was a selective agent as these key subunits diverged during evolution. Forgac has focused the issue more sharply by showing that the catalytic 'A' subunit of H+ V-ATPases has tow key sulfhydryl residues that are proximal to each other in the tertiary structure; these residues form a disulfide bond under oxidizing conditions, thereby inactivating the enzyme. The corresponding beta subunit of H+ F-ATPases lacks such sulfhydryl residues. Perhaps because their plasma membranes are the site of oxygen-dependent ATP synthesis, which would select against their sulfhydryl-containing regulatory sites, eubacterial cells lack H+ V-ATPases. This retention of the regulatory cysteine residue in the active sites during evolution may explain why H+ V-ATPases. are commonly found in the reducing atmosphere of the cytoplasm, where they would be active, rather than in the putatively oxidizing atmosphere of many plasma membranes, where they would be inactive. It may also explain why animal plasma membrane H+ V-ATPases are commonly found in 'mitochondria-rich' cells. We suggest that the high oxygen affinity of cytochrome oxidase leads to localized reducing conditions near mitochondria which would allow H+ V-ATPases to remain active in plasma membranes of such cells. Moreover, this 'redox modulation mechanism' may obviate the need to evoke two types of enzyme to explain selective targeting of H+ V-ATPases to plasma membranes or endomembranes: membrane that contains a single form of H+ V-ATPase may cycle between the membranes of the cytoplasmic organelles and the cell surface, the enzyme being active only when reducing conditions remove the disulfide bonding restraint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.

This review provides alternatives to two well established theories regarding membrane energization by H(+) V-ATPases. Firstly, we offer an alternative to the notion that the H(+) V-ATPase establishes a protonmotive force (pmf) across the membrane into which it is inserted. The term pmf, which was introduced by Peter Mitchell in 1961 in his chemiosmotic hypothesis for the synthesis of ATP by H(+...

متن کامل

The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: molecular analysis of electrogenic potassium transport in the tobacco hornworm midgut.

Goblet cell apical membranes in the larval midgut of Manduca sexta are the site of active and electrogenic K+ secretion. They possess a vacuolar-type ATPase which, in its immunopurified form, consists of at least nine polypeptides. cDNAs for the A and B subunits screened by monoclonal antibodies to the A subunit of the Manduca V-ATPase or by hybridisation with a cDNA probe for a plant V-ATPase ...

متن کامل

Involvement of vesicular H+-ATPase in insulin-stimulated glucose transport in 3T3-F442A adipocytes.

In secretory cells, osmotic swelling of secretory granules is proposed to be an intermediate step in exocytic fusion of the granules with the plasma membrane. For osmotic swelling of the granule, a H (+) gradient generated by vacuolar-type H (+) -ATPase (V-ATPase) may be a driving force for accumulation of K (+) via its exchange with H (+) , concurrent with accumulation of Cl (-) and H(2)O. Her...

متن کامل

Chemiosmotic systems in bioenergetics: H(+)-cycles and Na(+)-cycles.

The development of membrane bioenergetic studies during the last 25 years has clearly demonstrated the validity of the Mitchellian chemiosmotic H+ cycle concept. The circulation of H+ ions was shown to couple respiration-dependent or light-dependent energy-releasing reactions to ATP formation and performance of other types of membrane-linked work in mitochondria, chloroplasts, some bacteria, to...

متن کامل

Energize Animal Plasma Membranes for Secretion and Absorption of Ions and Fluids '

SYNOPSIS. H + V-ATPases are well known energizers of endomembranes; thus they play a key role in the acidification of vacuoles and vesicles. More recently it has become clear that they energize many plasma membranes as well. In epithelial cells H + V-ATPases usually energize apical plasma membranes in the same sense that Na + /K + P-ATPases usually energize basolateral plasma membranes. Example...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 200 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1997